Big Bang Theory is about the origin of the Universe. It suggests that about 1370 crore (13.7 billion) years ago, all matter and energy in the universe was concentrated in an area smaller than an atom.
At this instant, matter, energy, space, and time were not existent. Then suddenly with a bang, the Universe began to expand at an incredible rate, and matter, energy, space, and time came into being.
As the Universe expanded, matter began to coalesce into gas clouds and the stars and planets. Some scientists believe that this expansion is finite and will one day cease. After this point in time, the Universe will begin to collapse until a Big Crunch occurs.
Just before the Big Bang
No one knows what the universe was like at this time. The best current theory, the “inflationary universe” model assumes that all of space is filled with an extremely concentrated, unstable form of energy that will be transformed into particles of matter at the instant of the Big Bang. But no one knows how space and time came into existence in the first place.
The first few minutes to the next thousand years
After the initial expansion, the universe cooled sufficiently to allow the formation of subatomic particles, including photons, electrons, protons, and neutrons.
Though simple atomic nuclei formed within the first three minutes after the Big Bang, thousands of years passed before the first electrically neutral atoms formed. The majority of atoms that were produced by the Big Bang are hydrogen, along with helium and traces of lithium.
PS:ย If the universe had remained this hot and dense for much longer, the hydrogen would all have been cooked into other chemical elements. Without hydrogen, there would be no water, and therefore no life as we know it!
Read:ย Fermions and Bosons
Earlier Opaque Universe vs Later Transparent Universe
Photons (light) being elementary particles would have been formed soon after the Big Bang. But these photons would have beenย scattered by the early electrons.
As the Universe continued to cool, it would have eventually reached the temperature where electrons combined with nuclei to form neutral atoms (recombination).
Before this “recombination” occurred, the Universe would have been opaque because the free electrons would have caused light (photons) to scatter the way sunlight scatters from the water droplets in clouds.
But when the free electrons were absorbed to form neutral atoms, the Universe suddenly became transparent. Those same photons – the afterglow of the Big Bang known as Cosmic Background Radiation – can be observed today.
PS: The Opacity of the early Universe before recombination is, in effect, a curtain drawn over those interesting very early events. Fortunately, there is a way to observe the Universe that does not involve photons at all. Gravitational waves, the only known form of information that can reach us undistorted from the instant of the Big Bang, can carry information that we can get no other way. Two missions that are being considered by NASA, LISA and the Big Bang Observer, will look for the gravitational waves from the epoch of inflation.
The rate of Expansion of the Universe is not decreasing, but increasing due to Dark Energy!
It had always been assumed that the matter of the Universe would slow its rate of expansion. Mass creates gravity, gravity creates pull, and the pulling must slow the expansion.
But supernovae observations showed that the expansion of the Universe, rather than slowing, is accelerating.
Something, not like matter and not like ordinary energy, is pushing the galaxies apart. This “stuff” has been dubbed dark energy, but to give it a name is not to understand it.
Whether dark energy is a type of dynamical fluid, heretofore unknown to physics, or whether it is a property of the vacuum of space, or whether it is some modification to general relativity is not yet known.
Also read: GRAPES-3 Experiment
Question of Equilibrium: Answer in Inflationary model
Our investigation shows that the early Universe was too homogeneous.
How could pieces of the Universe that had never been in contact with each other have come to equilibrium at the very same temperature?
This and other cosmological problems could be solved, however, if there had been a very short period immediately after the Big Bang where the Universe experienced an incredible burst of expansion called “inflation.”
For this inflation to have taken place, the Universe at the time of the Big Bang must have been filled with an unstable form of energy whose nature is not yet known.
Whatever its nature, the inflationary model predicts that this primordial energy would have been unevenly distributed in space due to a kind of quantum noise that arose when the Universe was extremely small.
This pattern would have been transferred to the matter of the Universe and would show up in the photons that began streaming away freely at the moment of recombination.
Also read: LIGO-India
Proofs of Big Bang
- Expanding galaxies:ย Hubble in 1929, noted that galaxies outside our own Milky Way were all moving away from us, each at a speed proportional to its distance from us. He quickly realized what this meant that there must have been an instant in time (now known to be about 14 billion years ago) when the entire Universe was contained in a single point in space. The Universe must have been born in this single violent event which came to be known as the “Big Bang.”
- Cosmic Background radiation: Those early photons – the afterglow of the Big Bang known as cosmic background radiation – can be observed today.
Missions to study Big Bang
- Cosmic Background Explorer (COBE): NASA has launched two missions to study the cosmic background radiation, taking “baby pictures” of the Universe only 400,000 years after it was born. The first of these was the Cosmic Background Explorer (COBE).
- Wilkinson Microware Anisotropy Probe (WMAP):ย The second mission to examine the cosmic background radiation was the Wilkinson Microware Anisotropy Probe (WMAP). With greatly improved resolution compared to COBE, WMAP surveyed the entire sky, measuring temperature differences of the microwave radiation that is nearly uniformly distributed across the Universe. The picture shows a map of the sky, with hot regions in red and cooler regions in blue. By combining this evidence with theoretical models of the Universe, scientists have concluded that the Universe is “flat,” meaning that, on cosmological scales, the geometry of space satisfies the rules of Euclidean geometry (e.g., parallel lines never meet, the ratio of circle circumference to diameter is pi, etc).
- Planck: A third mission, Planck, led by the European Space Agency with significant participation from NASA, was launched in 2009. ย Planck is making the most accurate maps of the microwave background radiation yet. With instruments sensitive to temperature variations of a few millionths of a degree, and mapping the full sky over 9 wavelength bands, it measures the fluctuations of the temperature of the CMB with an accuracy set by fundamental astrophysical limits.
Telescopes: Today NASA spacecraft such as the Hubble Space Telescope and the Spitzer Space Telescope continue Edwin Hubble’s work of measuring the expansion of the Universe.
Also read: Nobel Prize
The Big Bang Theory in Laymen Language
In the beginning, there was only energy. This energy is converted to small particles (like photons). As there were earlier free electrons too, these earlier photons got scattered by the first electrons.
The result: a dark universe! But later, when electrons combined with protons and neutrons (atomic nuclei), atoms were formed. As then there were no free electrons to scatter photons then the Universe became transparent!
Some unknown energy kept particles pushing apart. Meanwhile, the universe started to cool too. Atoms like Hydrogen were formed. Atoms form molecules, molecules combine to form compounds, and so on.
The final result: all the big objects like what we see today planets, stars, galaxies, and so on! But now when we analyze the universe, the shape of the universe is flat, ie as if an explosion took place on a 2 -dimensional table!
The two theories that formed the basis of the Big Bang theory are (1) Einstein’s General Theory of Relativity and (2) The Cosmological Principles, which state that the universe is homogeneous throughout. Hope at least the basics of the ‘not-so-easy-to-understand’ Big Bang theory of energy to mass conversion is clear!
If not, have a look at 2-3 reference documents.
In news
Recent Observations by the James Webb Space Telescope (JWST): Early Massive Galaxies
Key Highlights of the Study:
- A challenge to the Big Bang Theory’s Standard Model
- The James Webb Space Telescope (JWST) has discovered a surprising number of massive, fully-formed galaxies that existed just 400-650 million years after the Big Bang.
- This finding is at odds with the standard cosmological model, which suggests galaxies took billions of years to form and evolve after the universe was created.
- These early galaxies are more developed than previously thought possible, indicating that the processes driving galaxy formation may have been faster or different than current theories predict.
- Role of Black Holes in Understanding Galaxy Formation
- Supermassive black holes, observed as “little red dots,” provide insights into galaxy formation and evolution.
- The heat and light emitted by black holes help astronomers measure the mass of stars in galaxies, giving clues about their size, structure, and formation time.
- The presence of such massive black holes so early in the universeโs history suggests a rapid growth mechanism that is not yet fully understood.
- Possible Explanations for Massive Early Galaxies
- Efficient Star Formation: Early galaxies may have been extremely efficient at converting gas into stars, surpassing the star-forming capabilities of modern galaxies.
- Alternative Cosmological Models: These observations might point to new physics or require adjustments to the current understanding of cosmic evolution.
- Capabilities of the James Webb Space Telescope
- The JWSTโs 6.5-meter-wide primary mirror and specialized design for infrared observations make it uniquely capable of studying the early universe.
- By observing in the infrared spectrum, JWST detects redshifted light from ancient galaxies, which was emitted billions of years ago.
- It can also see through cosmic dust clouds to identify celestial objects hidden from previous telescopes like the Hubble Space Telescope.
Significance of the Findings:
- These findings reshape our understanding of the universeโs early years and may prompt significant updates to the Big Bang Theory’s standard model.
- They highlight the need to explore new mechanisms for galaxy formation and star production in the cosmic dawn era.
- The JWST’s discoveries demonstrate its potential to uncover previously unseen aspects of the cosmos, opening doors to revolutionary insights in astrophysics.
Frequently Asked Questions (FAQs)
Q. Who discovered The Big Bang Theory?
Ans: Georges Lemaรฎtre, (1894-1966), Belgian cosmologist, Catholic priest, and father of the Big Bang theory.
Q. What is the Big Bang theory? Explain.
Ans: The Big Bang theory suggests that the universe began from an extremely hot, dense point smaller than a subatomic particle. An unimaginable force caused the intense burst of energy from the tiny point in a fraction of a second distributing all the matter and energy in all directions.
Q. Why is it called “big bang”?
Ans: The “Big Bang” theory is called that because astronomer Fred Hoyle coined the term. He used it ironically to mock the idea of a universe originating from a single explosive event, essentially calling it a “big bang” during a BBC radio broadcast in 1949, despite not believing in the theory himself; the name stuck even though it was meant to be derogatory.
Sir/Mam,
I am an IAS aspirant however I am from a lower middle class family. I have completed my graduation from Calcutta University in the year 2010. Due to some financial crunch I could not prepare properly.So if you can guide me or suggest me to clear the coming IAS . I will be very grateful to you. I have gone through this website and I thing I am on the right track now. Please enlight me.
Khurram Firoze
Kidderpore
Kolkata-700023
Request you to follow the guidance and strategies provided in this website in detail. Also, learn from the interviews of toppers. Visit your nearby library and refer the suggested books provided in this website. Read newspapers. Have confidence. You can clear IAS! All the best!
sir/Mam
i am an IAS aspirant i am completing my graduation final year help me about time management how to get prepare for exam completely about the question paper n every detail please help me to get though it. Thank you.
Starts with ncert books …history ,geography, eco,and polity..from 6 to12, eco 9-12.land read the syllablus of upsc pre-,main and read the reference book of each syllabus portion..either if u want to any help u can cl me @9135277022
Hello Sir,
Iโm an post graduate engineer and Iโm 30 years old now. Is it too late for me to aspire for the IAS. What are the things I should do to start preparing? Iโm doing an 8-5 job.
Regards
Nandu
I am an ias aspirant im studying in std 12 and i want to be an ias officer i request you to please guide me how to start how to study in 3 years because i just want to clear it i want to finish it with AIR rank so please guide me
เคฏเคน เค เคเฅเคเฅ เคฌเคพเคค เคนเฅ เคเคฟ เคเคช เค เคญเฅ 12 เคตเฅเค เคเคเฅเคทเคพ เคฎเฅ เคนเฅเค เฅค
เคคเฅ เคชเคนเคฒเฅ เคเคช 12 เคตเฅ เคเคเฅเคทเคพ เคชเคฐ เคงเฅเคฏเคพเคจ เคฆเฅเคเคฟเคเฅค
เคเคธเคเฅ เคฌเคพเคฆ CSE เคเคพ syllabus เคคเฅเคฏเคพเคฐ เคเฅเคเคฟเค เคเคฐ เคซเคฟเคฐ
เคเคช เค เคชเคจเฅ preparation ncert เคธเฅ เคเคฐ เคธเคเคคเฅ เคนเฅเค เคเคฐ เคธเคพเคฅ เคนเฅ
เคเคช Google, YouTube เคเคจ เคธเคฌ เคเคพ use เคเคฐ เคธเคเคคเฅ เคนเฅเคเฅค
My name is Maqsood.Iam from Pakistan and iam an aspirant of the competitive exam of Pakistan so called CSS(Civil Superior Services).I follow your website and YouTube channel.It helps me preparing the exam effectively.Actually,iam facing an imbroglio of time-management and lack of guidance for subject-preparations. Therefore, i need your help grappling such issues that are bottlenecks for my CSS-preparation.Thankyou